NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
QIELECTE R

THESIS

PLAN-BASED SIMULATION
OF MALICIOUS INTRUDERS
ON A COMPUTER SYSTEM
by
Christopher C. Roberts

March 1995

Thesis Advisor: Neil P. Rowe

Approved for public release; distribution is unlimited.

DTIG QUALITY INSPECIED 8

19950816 135

REPORT DOCUMENTATION PAGE ot N oo 0138

p——
1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE
March 1995

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
.Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

I Y Y YT T Y T e—
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

COMPUTER SYSTEM

PLAN-BASED SIMULATION OF MALICIOUS INTRUDERS ON A

——
5. FUNDING NUMBERS

6. AUTHOR(S)
Roberts, Christopher C.

————————— T — - ———————— e ————
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

Y T T T T TS T g gt
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT | .
Approved for public release; distribution is unlimited.

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

g — . ———
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The problem addressed by this work was to reduce the time taken to train system administrators in
detecting computer security problems in system audit logs. The approach taken was to develop a simulator
which generates realistic audit logs that illustrate both non-malicious and malicious behavior. These logs
can be used to train systern administrators. The simulator was written in Prolog and used means-ends
analysis to simulate seventeen combinations of general system functions which includes the following:
logins, editing, file deletions, file copying, changing file access rights, obtaining superuser privileges,
sending mail and logouts. The simulation manipulates virtual system files analogously to what real users
do. This creates realistic audit file logs that include a mixture of normal and malicious activity. More
impressive is that the entire source program requires only 19.1 kbytes of space, making it small enough to
be compatible with a personal computer.

14. SUBJECT TERMS

Detection System

15. NUMBER OF PAGES

Artificial Intelligence, Planning, Simulation, Means-Ends Analysis, Intrusion 50

[16. PRICE CODE

. ——— T T T . T YT}
17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

T TV Ty T 7T 7V S A B i gy e =y
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
i Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

PLAN-BASED SIMULATION OF MALICIOUS INTRUDERS
ON A COMPUTER SYSTEM

Christopher C. Roberts
Lieutenant Commander, United States Naval Reserve
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the

a0 &i—

Availability Codes

: Accesion For
requirements for the degree of
NTtS CRA&I
MASTER OF SCIENCE IN COMPUTER SCIENCE | DTiC 148
tyinannounce
Justification
from the ‘
BY oo
NAVAL POSTGRADUATE SCHOOL Distribution]
March 1995
Dist Special
Author: 0&@%& 1 @Wb A- (

|

Avait and/or

A

Christopher C. Roberts

AR I Sy

Neil P. Rowe, Thesis Advisor

£

Roger Stefrip, Second Reader

Tedem

Ted Lewis, Chairman,
Department of Computer Science

iii

iv

ABSTRACT

The problem addressed by this work was to reduce the time taken to train system
administrators in detecting computer security problems in system audit logs. The approach
taken was to develop a simulator which generates realistic audit logs that illustrate both
non-malicious and malicious behavior. These logs can be used to train system
administrators. The simulator was written in Prolog and used means-ends analysis to
simulate seventeen combinations of general system functions which includes the
following: logins, editing, file deletions, file copying, changing file access rights, obtaining
‘superuser privileges, sending mail and logouts. The simulation manipulates virtual system
files analogously to what real users do. This creates realistic audit file logs that include a
mixture of normal and malicious activity. More impressive is that the entire source program
requires only 19.1 kbytes of space, making it small enough to be compatible with a personal

computer.

TABLE OF CONTENTS

I INTRODUCTIONcceoiuiriirinininiieiseresesesessessssssssesesesssscssesasseesssssssssssssssssssssseses 1
Al PURPOSE ...ttt sttt ssss sttt s s esesensesens 1

B GENERAL DESCRIPTIONcocoetrttrerererereeeseeseseeeseseseseseseseseesessessesessees 1

C. THESIS CONTENTSoooioiirtemrieeeerneetese st ese e s eeneseesesaeen 2

II. PLANNING METHODSccosoiimerirreeetnee et ressssesesssessssessssessesessseseses 3
A. GENERAL OPERATIONcootiiririreiereeeerercreterees s reesesesessesseeseesesesasnsans 3

B, GPS ottt sa st S 4

C. STRIPS ..ottt sttt st s st s se s e e s e 5

III. INTRUSIONS AND THEIR DETECTIONcoovoeuiurrteeeeeeereeeeeenesesesssesenns 7
A. TOOLS FOR INTRUSION DETECTIONcceceeerererererererererrenrcenssenens 7

B CURRENT SIMULATION ATTEMPTScooeeeeeeeeerererereneeceeseeaesenne 8

IV. SIMULATION PROGRAM SPECIFICScccecevmrrerereririrerieeeeesetssesseesenenns 11
A, ASSUMPTIONS ...ttt essrass e s ssebesesssssss s seseeneneneas 11

B. HARDWARE/SOFTWARE REQUIREMENTScccceeveererererererennenes 11

C. PROGRAM OPERATIONScoociiririrenteeereesseseseee e esenesesessasesssensnas 11

1. Input Section- “Sim_init” Filecccocevveeerennireceeceeeeeceeeveecnnns 12

2. Output Section- “audit_ file” Filec..ccceveverecvrveereerreceererenen eeeneens 12

3. Goals Section- “g0alsX” Filecccovevevnincerinrreneeieeeeere e eneressesenee 13

4. Driver Section-“master” Filecccvvrniernreeeereseeeeeeesnereresennenns 13

& METUTORoiiiiiiiiiitneccetnecseeeessessesssse s sesessnesenes 14

b. INTHALION ..voviviriiiccrccrireeiereteee st s s se e esenesenene 14

c.Generate “audit_file” Factsccccovviveverrvenenencereerecersreessee e, 14

d. Modified Filesccccoeveerneinicreernieertsenereetecresseesseseseseese e s s 14

e. Output “audit_ file” Factscccccoccerrersiirierireriencrecere et 15

f. Eliminate Spurious OUtPULccceceveeurerieeeeevereneeenrecneasessessennenns 15

5. Specific Operations Section- “userops” Filecccccevvverercrecrnnnnnnne. 15

V. RESULTS ..oeeeneteestsestsestse st et a st s se st sass e e s e sesasaesessssansensensnsessensan 19
VI, CONCLUSIONSoooieireentrtereetntsneestssesssstesssssssessssssesesssesessssssesessesessasans 21
A. MAJOR ACHIEVEMENTSoootrirnitreninriteensniessesessesenssesesesessessenses 21

B WEAKNESSES ... eenetreinientsets e stsseseessesassessesassessesenessesens 21

C. FUTURE RESEARCHccoosiemirteririineteenteeneesesseessessesesssssesssssnessssens 21
APPENDIX A: PROGRAM CODEccooicieieireeinreteentseteenerssesesseesessssssssessesassans 23
APPENDIX B: PROGRAM RESULTSccoititiieineetecteneeiseesreseessessessessessessessessessens 33
LIST OF REFERENCEScoioiiiiiiiiiiieninencrestetestssesesasosessessessssteseestsssessessessenss 39
INITIAL DISTRIBUTION LIST ..ottt eeeeeeteeseecssenssneeesessessesesressasenes 41

vii

I. INTRODUCTION

A. PURPOSE

This thesis simulates normal and malicious (“hacker”) computer system usage, and
then generates an audit log script. This script could then be used to test automatic Intrusion
Detection Systems (IDS) or to tutor system administrators in the detection of threats to the
system’s security. Normal user actions simulated include file editing, norrﬂal log on,
becoming a superuser, and sending e-mail messages to warn the system administrator of an
attack. The hacker actions to be simulated include file deletion, insertion of a Trojan Horse,

file copying, changing file access permissions, and becoming superuser.

B. GENERAL DESCRIPTION

Simulating the normal users and hackers is based on the general activity these two
different types of users perform. To ensure effective and realistic simulation, the normal
users and hackers are simulated in the Prolog language with general planning techniques
and means-ends analysis from METUTOR [Ref. 1]. Prolog’s compatibility with means-
ends analysis makes it an easy choice to be the programming language used for this
simulation.

Hacker simulation is an important developing concept in the field of computer
security [Ref. 2]. Although acts of intrusion tend to be sporadic and irregular in nature, a
simulation that is generally similar to a hacker can help test intrusion detection.
Randomness can be easily included in a means-ends analysis solution to increase realism.

Planning principles are used to simulate the different normal users and hackers and
generate specific scripts for each. All of these scripts are then assembled in a single audit
file and sorted by time. The normal users and hackers coexist in a virtual world of virtual
files. Specification of the actions of normal users and hackers are contained in the

“userops” file. The actions are semi-randomly chosen via means-ends analysis. Each action

interacts with a virtual hierarchical file system contained in the “sim_init” file. For
instance, at the completion of the file-deletion threat, random files will have been deleted
from the virtual system and a one-line audit fact saying so will be written. Randomness is
incorporated in some of the operations to simulate the random nature of users. Files are
randomly chosen to be edited or removed to simulate the haphazard nature a hacker may
exhibit when attacking the system. Hacker goals are simulated to always be different to
ensure the greatest degree of realism. Randomness is also used in generating the time
duration for each of the different operations.

We also create virtual e-mail messages to the system administrator for simulated
users who see something wrong with their files. The odds of a system administrator actually
observing a break-in are very slim; the person that is being attacked is actually the system

administrator’s best “detection device.”

C. THESIS CONTENTS

Chapter II provides a brief background on the principles used in the simulation, and
compares this simulation with systems that are similar in concept. Chapter IIT addresses the
relation between our simulation and an Intrusion Detection System. Chapter IV describes
the simulation in detail, including programming language specifics, input parameters and
output parameters. Chapter V includes data on the results (“audit_file” log examples,
program running time, size, etc.). Chapter VI describes the major achievements of the
simulation, the weaknesses that still exist, and the future research work that could build on

this simulation.

II. PLANNING METHODS

This chapter provides background on the planning principles that are used as a basis

for the simulation.

A. GENERAL OPERATION

Planning simulation is an integral part of Al-based systems. A common approach
to planning involves the action of breaking down a complex problem into smaller, but
related, problems. The solutions of the smaller problems are then assembled together to
provide the answer to the larger, more complex problem [Ref. 3]. Planning techniques are
well matched for dealing with a simulation of the type developed in this thesis. Normal
users and hackers are simulated with basic planning principles in mind. Each simple action
is designed to cause one primary change to the virtual world. Combining all of the acts
together results in a plan [Ref. 4].

It was determined early in the development of Al that simulations that represented
the problem-solving knowledge related to the main program would be invaluable. These
simulations would allow human experts involved with the expert system to devote more
time to the program and related computer configurations [Ref. 5]. A simulation’s results
are a valuable input to the applicable expert system. To instill a sense of realism to the
simulation, uncertainty can be included to vary the outcome.

The simulation uses a searching technique called means-ends analysis. Means-ends
analysis is based on analyzing abstractions. Abstractions simplify the simulation, mak-
ing it easier for the simulation to “reason” [Ref. 6]. Means-ends analysis is a form of
backward chaining where the system starts with a set of goals, and then works backwards
using rules to see if its possible to obtain the goal. If the rules exist, then the goal can be
reached [Ref. 6]. The normal users and hackers are simulated using backward chaining.

Means-ends analysis works on processes that are made up of four main categories:
recommended operators, preconditions, addpostconditions and deletepostconditions.

Recommended operators are operators that allow the system to advance to the recom-

mended stage by indicating a difference between the current state and the goal state.
Recommended operators are in this format [Ref. 6]:
recommended(<diﬁ‘eren_ce>, <operator>). .
Prior to advancin g to a recommended stage, the system has to have the nec-
essary preconditions that are associated with that recommended operator. The operator
will fail if the preconditions can not be met. Preconditions are in this format [Ref. 6]:

precondition(<operator>,<list of associated preconditions and predicate
expressions that must exist for the operator to succeed>).

The system advances to the goal based on the success of the operators. Means-
ends analysis handles changing conditions by using add/deletepostconditions. Addpost-
conditions become true after a recommended operator has been completed. Addpost-
conditions can be preconditions for another recommended operation. On the other hand,
deletepostconditions make the associated operator false and change a fact from true to
false. Add/deletepostconditions are in this format [Ref. 6]:)

addl/deletepostcondition(<opertor>, [<predicate expressionl >,
<predicate expression2>,...]).

B. GPS

GPS is the first implementation of means-ends analysis, developed by A. Newell
and H. Simon in 1963 based on their beliefs that the process behind human reasoning could
be modeled by a computer [Ref. 7]. They modeled the human reasoning process based on
a comparison process, comparing the initial state of a process to the goal state. These
comparisons continue until either the goal state is reached (success) or the process exhausts
all of the rules (failure) [Ref. 8]. GPS generates new rules based on the differences that exist
between the states. A new rule is used only if it reduces the difference between the states.
GPS was also the first successful plann'ing system to use means-ends analysis to reach a
goal [Ref. 9]. GPS can backtrack to previously reached goals if the process encounters an

unsolvable goal along the way, something important to our program.

C. STRIPS

Like GPS, the Stanford Research Institute Problem Solver (STRIPS) program also
exploited preconditions, an add-list, and a delete-list [Ref. 10]. STRIPS’s manner in which
it proceeds towards a goal is similar to means-ends analysis. But STRIPS’s lack of any
recommended operator, as in means-ends analysis, can make the process longer as it must

search blindly.

ITI. INTRUSIONS AND THEIR DETECTION

This chapter addresses the relation between our simulation and an Intrusion

Detection System (IDS).

A. TOOLS FOR INTRUSION DETECTION

The duties of a system administrator are numerous. They vary from establishing
new accounts to ensuring that the system’s software remains current. One especially
important duty crammed in with all the rest is the responsibility of maintaining system
security. |

There currently exist numerous automatic tools to assist the system administrator

in maintaining system security: log_tcp, Computer Oracle Password and Security System

(COPS), Tripwire, to name a few[Ref. 12]. The results of these tools can be directed to a
single file so that the system administrator can determine the system status from e);amining
only one source. For instance, one of the functions of COPS is to send a notice to the system
administrator when poor passwords are detected. Tripwire detects modifications to the size
of specific, sensitive files and sends a report to the system administrator if modifications
are detected. The only problem with these reports is that the system administrator must be
able to recognize and prioritize a serious threat versus a not-so-serious threat. The system
administrator may have a file full of alerts, created by the system security tool, but may fail
to understand them. This lapse is easily understandable; without continuous exposure to
valid intrusions, threat recognition skills can become rusty.

Automated IDSs exist which utilize an expert system to detect malicious system
activity and automatically inform the system administrator of malicious behavior. These
systems use two techniques to catch suspicious behavior: statistical inference and rule-
based inference[Ref. 13].

Statistical inference is based on comparing observed present behavior to past,

established behavior. Audit data is compared with behavioral data that is maintained for

each legitimate user of the system. These two sets of data are each described by a vector,
based on intrusion-detection variables. A difference between these two vectors is
interpreted as a possible security intrusion[Ref. 13]. The Intrusion-Detection Expert
System (IDES) is one fype of system that uses statitistical inference.

IDES was developed by a team at the Stanford Research Institute to perform real-
time detection of security violations. This system maintains user behavioral profiles based
on CPU and memory usage in the form of frequency tables, means and covariances. These
statistics are then compared to the audit data with vector differences indicating a possible
security intrusion. One problem with this approach is that an intruder’s erratic behavior
could be similar to a worker who also displays erratic behavior as his “normal behavior.”
IDES and another IDS, the Multics Intrusion Detection and Alerting System (MIDAS), use
rule-based inference techniques to handle such problems [Ref. 13,14].

MIDAS was developed by the National Computer Service Center to moritor a
government Multics system. MIDAS uses rule-based inferences to compare actions
exhibited in the audit log to expert system rules that are developed based on past intrusions,
known system weak points and possible attack scenarios[Ref. 15]. The rules are fixed and
are independent of any one particular user or system function. Several examples of
behavior covered by MIDAS include the following: password failure on a system account,
login failure with an unknown user name, login attempt to an unaccessible account, unusual
or invalid commands or command patterns, users logged in simultaneously from two
locations, and attempts to modify system files[Ref. 16].

It would be valuable to generate simulations for testing any type of IDS. Then, for

instance, IDES can test its effectiveness against variations of the same threat.

B. CURRENT SIMULATION ATTEMPTS

Researchers have recently developed a system prototype which utilizes a tool
command language, Tel[Ref. 2]. Tel contains a C-based library package which tests

intrusion detection systems by means of running parallel scripts simultaneously. Tel allows

the user to create scripts that resemble actions of an intruder. These scripts are then run as
parallel processes so as to resemble multiple attacks occurring simultaneously. The purpose
of this prototype is to check the effectiveness of different intrusion detection systems.

For the parallel processes to appear realistic, close synchronization is necessary [Ref. 2].
One apparent drawback is that no two runs are predictable unless special synchronization

mechanisms are used to augment the system; their system uses such a mechanism.

10

IV. SIMULATION PROGRAM SPECIFICS

A. ASSUMPTIONS

To develop the simulation, assumptions are made based on typical actions that are
made by normal users and hackers. This simulation assumes a clear purpose of each action
of normal users and hackers; no “sneaky” actions are simulated. Thus, each action causes
an obvious effect to the virtual files found in the data initialization file “sim_init.”

One major assumption is that the simulated hacker will eventually be able to log in
to the system. In real life, hackers will try repeatedly to log in for hours at a time, quit for
the day, and then try again the next day. But a simulated hacker that cannot log in cannot
cause simulated damage!

To ensure some degree of randomness to the action of 1ogging in, a probability
function is applied to most threat actions. This simulates logins that vary from being able
to log in within several attempts, to the dedicated threat that only succeeds in logging in

after numerous attempts. But the normal user succeeds in logging in on all attempts.

B. HARDWARE/SOFTWARE REQUIREMENTS
The simulation was developed on a Sun Sparkstation with a UNIX operating sys-
tem that accesses a Quintus Prolog interpreter. The simulation is written in the Quintus

Prolog language, Release 3 [Ref. 17].

C. PROGRAM OPERATIONS

The model consists of four sections: “master,” “userops,” an input section
(“sim_init,” “goalsX”) and an output section, “audit_file” (see Figure 1 on page 12). The
“master” section is the driver section for the simulation. The “userops” section is accessed
from the “master” section and contains all of the simulation actions. The “master” section
accesses a data initialization file, “sim_init” for input. The “master” section also accesses
a “goalsX” file for specific goal completion. The simulation generates a result based on the

inputted file facts and the specified parameters in the “master” section, coupled with the

11

associated operations in the “userops” section. This result is outputted to the “audit_ file.”

The user of the simulation could then access this “audit_ file” to check on the results.

1. Input Section- “sim_init” File
The data structure of each virtual file in the initialization file “sim_init” is:

file(name of file, parent of owner(i.e. directory), user of file, type of file,
size of file, read/writelexecute protection for file, time that file was last

modified).
goalsX
sim_init userops
\ t
master /
'
audit_file

i

Simulation User

Figure 1: Functional Block Diagram

2. Output Section- “audit_ file” File

The results of each action that occur within the “userops” section are outputted
to a virtual “audit_file” file that can be accessed by another system.The data structure of

each act in the “audit_file” is:

12

audit(user of the “sim_init” file, completion time of the action on this file, the
directory that the user is in, operation just completed, status of operation just
completed).

The Jast argument to the audit fact, “status,” has several meanings. The operation
can result in an “ok,” “fail,” a message to be sent to the system administrator, or a numeric

status. A numeric status refers to the changed size of the file that was edited.

3. Goals Section- “goalsX” File

To simulate various users, goal files are created that contain different types of users.
Each goal file models the simulated activities of a single user; either a normal user or a
malicious user. Specific goal files are selected in the “master” file. The “audit_file” is the
resulting mix of running the simulation with all of the simulated users from the different
goal files. This allows the flexibility of creating different “audit_files.” For instance, if
“goals4” had numerous goal facts containing copy file actions, more copy results would
exist in the “audit_file” script. Goal facts in each “goalsX” file are arranged like this:

goal([not(logged_in(User)),not(complaint(File.Dir)),modified(ls,bin),

modified(cd,bin)]).
For this particular goal to become true:

not(logged_in(User)): The user must not be logged in.

not(complaint(File,Dir)): The user has no complaints for the system administrator
about any files.

modified(ls,bin): File “Is” in “bin” directory has been modified.

modified(cd,bin). File “cd” in “bin” directory has been modified.

4. Driver Section-“master’’ File

This section loads the libraries, files and another program that provides means-ends
analysis for the simulation (METUTOR), starts the simulation and initiates the call to
means-ends analysis, and lists the rules that export the output to the “audit_file.” In
addition, this section runs other routines that affect the overall functioning of the

simulation.

13

a. METUTOR
METUTOR provides the means-ends analysis process for the simulation
[Ref. 1]. METUTOR allows each.operation to be examined step-by-step as the operations

are developed, enabling quick testing of minor refinements.

b. Initiation

This section contains the call to start the simulation, along with the main
driving actions, such as the call to the means-ends analysis process, the function that Writes
to the output file, and the virtual system time initialization function.

To start the simulation, a specific goal file is entered at the prompt;
“mygo(1),” for instance, runs the simulation with the goals contained in the file, “goals1.”
In this section previously altered simulated files are cleared from the buffer each time the
simulation is started. For each operation that is run, a virtual system time of completion is
generated. Also, a virtual user is selected from one of the “sim_init” file facts. Ail of the
“sim_init” file facts and the goals from the selected goals file are then inputted to the

means-ends analysis process.

c. Generate “audit_file” Facts

The section creates “audit_file” facts after a plan for a goal has been formed
via the means-ends analysis process. These “audit_file” facts are created based on the
operation selected in the initiation section, operation completion time, the virtual user, the
virtual directory that the file exists in, and the overall status of this particular operation.
Operation names that are generated for the simulation are transformed from within this

section into realistic Unix operating names.

d. Modified Files
Professor Rowe developed this section which asserts facts to the file,

“tampered_file.” This file contains files that have been modified or deleted.

14

e. Output “audit_ file” Facts

Professor Rowe developed this section which takes all of the cached audit

facts from all of the goals and writes them out to disc.

[Eliminate Spurious Output

Professor Rowe developed this section which eliminates spurious output
due to rough handling of time, removes complaints about files not yet tampered with, and

removes duplicate complaints about the same file from the same user:

5. Specific Operations Section- “userops” File

The “userops” section contains specifications for the different normal and
malicious operations. This section contains all of the recommended-operator facts,
precondition facts, delete/addpostcondition facts, plus facts and rules that assist the
operation of the rules in the “master” section.

To better illustrate these actions, sample facts of several actions are described
below:

recommended([modified(File.Dir)] [file(File.Dir,A,B,C,D,E)] emacs(File,Dir A,

B,C,D,E,DC)):- random(R), DC is integer(300*R)-100.

In order to modify a file, first a random number “R” is generated. Then, the equation “(300
*R)-100)” is performed; the resulting number “DC” is then converted to an integer. “DC”
1s now the new size of the modified file.

precondition(cp(File,Dir File2,Dir2,A,B,C.D,E)[logged_in(User),current_direct-
ory(Dir) file(File,Dir,User,B,C,D,E)]).

The preconditions for copying a file are as follows: the user must be logged in and logged
in the directory of the file to be copied, and the file that is to be copied must exist in the
user’s path. The user is randomly selected from the “sim_init” file. The directory of this
user is then the target of the copying action.

deletepostcondition(emacs(File,Dir,A,B,C.D,EF),
[file(File.Dir,A,B,C,D,E)]).

Once the protection has been modified, the “file” fact describing the old, unchanged file is
no longer true.

15

addpostcondition(login(User),[current_directory(User),logged_in(User)].
Upon logging in, the user is in the top directory of the login name.

randchange(emacs(File,Dir,A,B,C,D E,F),[tampered(File,Dir)] ,complaint(File,
Dir),[],0.2).

Ensures that 20% of the time that a file is modified, a complaint mail message is sent to the
system administrator if it is thought that the file has been tampered with.

command_result(emacs(File,Dir,A,B,C,D,E,DC), NC):- NC is C+DC,!.

Usually the fifth audit argument is “ok,” indicating that the virtual file action completed
satisfactorily. But for an “emacs” audit fact, the fifth argument is the new size of the file;
determined by adding the old file size to a random number.

average_duration(cp(A,B,C.D,E,F,G,H,I),30).
Copying a file requires 30 seconds on the average.

new_directory(Dir,cd(Dir2),Dir2):-!.
new_directory(Dir,login(User),User):-!.
new_directory(Dir,Op,Dir):-!.

This specifies the new directory a user is in once the command has been completed.
new_account(User,login(User2),User2):-!.new_account(User,0,User).

This is similar to the “new_directory” routine only it specifies the new login name after
completing a specific command.

acknowledge tamper(S,G):-
(member(modified(F,D),G); member(duplicated(F,D,F2,D2),G)),
\+ tampered(F,D), assertz(tampered_file(F,D)), fail.
acknowledge tamper(S,G):- member(clobbered(D),G),
member(file(F.D, , , , ,),S),
\+ tampered(F D), assertz(tampered_file(F,D)), fail.
acknowledge_tamper(S,G):- member(modified(F,D),G),
member(file(F.D, , , , ,).S),
\+ tampered(F,D), assertz(tampered_file(F,D)), fail.
acknowledge tamper(S,G):- member(accessible(F,D),G),

16

\+ tampered(F,D), assertz(tampered_file(F,D)), fail.
acknowledge tamper(S,G).

Specifies conditions under which files can be inferred to have been tampered with.

The “userops” file, with all of the above operator information, is used by the
“goalsX” files listing goals for sets of users in simulation runs. The “viewed” goal orders
the simulation to perform an “Is” action on the files in the particular directory. The
“superused” goal orders the simulation to become a superuser. The “duplicated” goal
orders the copying of the file that is in the directory that the user has logged in to. The
“modified” goal orders changing the size of the file; sometimes the file size increases, other
times it decreases. This change in the size of a file could either be normal use or related to
the insertion of a Trojan Horse, virus or other destructive code. The “clobbered” goal
orders the deletion of up to six files from the directory that the user is in at the time of
logging in. The deletion of a single file is probably related to a normal user action; deletion
of several or all files from one directory is more than likely related to malicious activity.
The “created” goal orders creating a new file. The “mailed” goal orders sending mail.
Upon seeing a malicious action a user invokes this goal to send a mail message to the
system administrator, alerting the system administrator to which file is being tampered
with. The “logged_in” goal orders logging in to the system under a given user name. The
“current_directory” goal orders the user to be in a particular directory. The “accessible”
goal orders changing the access rights of a file from any existing protection to no protection
at all; this is clearly a malicious action. Some examples of how these goals are achieved

are represented by tree structures in Figure 2.

17

copy 7 modify
/? file /? file
? find file log out find file log out

change to directory change to directory
which contains file which contains file
login log in
duplicated modified

create
new
file

log out

change to directory

change to director - . . .
& y which will contain new file

which contains files

i v

log in log in

clobbered created

change send
access mail
rights to s.a.
find log out notice file log out
file | is bad
change to directory change to directory
? which contains file which contains file
log in log in
accessible mailed

Figure 2: “Userops’ Operations

18

V. RESULTS

Here are sample “audit_file” facts generated for common goals. These appear
realistic. Inspection of a complete “audit_file” script (like in Appendix B) reveals that

numerous actions can occur concurrently.

MODIFY A FILE

audit(root,2167,none,’ login root’ ,ok).

audit(root,2427 root,emacs Is’,2090). note: “root” uses the emacs editor on file “Is,”
audit(root,2956,root,’emacs cd’ ,5148). resulting in a new file size of “2090.”
audit(root,2958,root,logout,ok).

MODIFY A FILE AND MAIL MESSAGE TO ROOT

audit(wesson4368,none,’ login wesson’ ,ok).

audit(wesson,4564,wesson,’ emacs betterpaper’ 5416).

audit(wesson,4648,wesson,’ mail root’ ,bad(betterpaper,wesson)). note: “wesson” sends e-
mail to the system administrator, “root,” to inform “root” that file “betterpaper” in
directory “wesson” is suspect.)

audit(wesson,4655,wesson,logout,ok).

BECOME SUPERUSER AND CHANGE FILE ACCESS

audit(smith,7603,none,’ login smith’,ok).

audit(smith,7607 ,smith,su,ok).

audit(smith,7609,smith,’ login jones’ ,ok).

audit(jones,7612,jones, chmod 777777 goodpaper’,0k). note: “jones” becomes su and
changes the protection on file “goodpaper” to “777777.”

audit(jones,7617 jones,logout,ok).

COPY A FILE AND MODIFY A FILE

audit(root,9260,none,’ login root’ ,ok).

audit(root,9272,root,’ cd bin’ ,0k).

audit(root,9280,bin,’ cd etc’ ,0k).

audit(root,9320,etc,’ cp passwd etc/passwd’ ,0k). note: “root” copies file “passwd” in
directory “etc.”

audit(root,9811,etc,’emacs passwd’,977).

audit(root,9813,etc,logout,ok).

BECOME SUPERUSER AND MODIFY A FILE
audit(dow,3917 ,none,’ login dow’ ,0k).

19

audit(dow,3934,dow,su,ok).

audit(dow,3947,dow,’ login smith’ ,ok).
audit(smith,4206,smith,’emacs samples’,275).
audit(smith, 4212 ,smith,logout,ok).

BECOME SUPERUSER AND DELETE FILES

audit(dow,9462,none,’ login dow’ ,0k).
audit(dow,9467,dow,su,ok).
audit(dow,9481,dow,’ login doe’ ,0k).
audit(doe,9498,doe,’ rm *’ ,0k).
audit(doe,9504,doe,logout,ok).

The statistics for running two different sized goals files shows that a large number
of “audit_file” facts can be produced from a small program (total memory: 0.78 mbytes).
Running “goalsl” took 4.967 seconds, required 19068 bytes of space, (“master,”
“userops,” and “sim_init” require 14323 bytes alone) and generated 163 lines of
“audit_file” facts which consisted of 35 users (14 malicious users). Running a smaller file,
“goals2”, took 1.850 seconds, required 16253 bytes of space, and generated 57 lines of

“audit_file” facts which consisted of 15 users (3 malicious users).

20

VI. CONCLUSIONS

A. MAJOR ACHIEVEMENTS

The simulation generates different sessions of normal and malicious activity in one
chronological script. Each action simulated realistically portrays both types of users sim-
ultaneously using the virtual system. Our simulation is an excellent input for any system
that needs a realistic audit log as an input source. The simulation’s structure is flexible
enough that it could be used for an expert system that requires numerous chronolo gically-
ordered events as an input. Additionally, it is significant to note that our simulation offers
greater portability than an IDS. The size of an IDS usually prohibits any PC application.

Our simulation is small and robust enough to be compatible with a personal computer.

B. WEAKNESSES

A weakness is the simplicity of each normal and malicious user action. As-there are
many different versions of these threats, it would be hard to simulate them all. But any
threat-recognition training that a system administrator can receive is more valuable than no

training at all.

C. FUTURE RESEARCH

The scope of each action can be broadened and made more complex. As was
mentioned in Chapter I, this simulation could be used as an input to an intrusion detection
tutor. Additional research could be directed to tailor the simulation to this type of tutor.

Future research could investigate goal manipulation. This could involve tailoring
the simulation to provide stimuli for the various automatic IDS mentioned in Chapter III.
The simulation could then repeatedly probe an IDS, searching for thin areas of protection,
determining which areas are stronger than others, and determining which areas are

redundant..

21

22

APPENDIX A: PROGRAM CODE

This appendix contains the Prolog code for the “master” file, the “userops” file, the
“sim_init” file, and the “goalsX” files.

DRIVER SECTION: “master” file

/* Loads metutor30 & operator definition file & initial simulated files */

/* ~rowe/pro/metutor/intdet */

:- ensure_loaded(library(math)), ensure_loaded('metutor30"),
ensure_loaded('sim_init"), ensure_loaded(userops), asserta(debugflag).

/* Argument is an integer indicating which goals set to use */

mygo(N) :- start_state(S), concatenate('goals',N,Goalfile), consult(Goalfile),
abolish(audit/5), goal(G), mygo(S,G), fail.

mygo(N) :- concatenate(‘audit',N, Auditfile), write_audit_file(Auditfile).

mygo(XS,G) :- random(R), T is R*10000, round(T,RT),
nice_bagof(tampered(F2,D2),earlier_tampered_file(F2,D2,RT),TL),
append(XS,TL,S), abolish(solution/4), abolish(unsolvable/2),
random_once_means_ends(S,G,0ps,Y), write(Ops), nl, write(Y), nl, nl,
Ops=[login(U)L_], generate_audit(Ops,RT,U,none), !.

/* Returns a file that has been tampered with before time TT */

earlier_tampered_file(F,D,TT) :- tampered_file(F,D,T), \+ T<TT.

concatenate(S1,52,S) :- name(S1,A1), name(S2,A2), append(A1,A2,A),
name(S,A), !.

/* Don't pick directories when you need a random file */

/* Create audit facts after a plan for a goal has been found */

generate_audit([], T,U,Dir).

generate_audit([O,0l0L],T,U,Dir) :- !,
generate_audit_fact(O,T,NT,Dir,U,fail), !, generate_audit([OIOL],NT,U,Dir).

generate_audit([OIOL],T,U,Dir) :- !, command_result(O,CR),
generate_audit_fact(O,T,NT,Dir,U,CR),
new_account(U,O,NU), new_directory(Dir,O,NDir), !,
generate_audit(OL,NT,NU,NDir).

generate_audit_fact(O,T,NT,Dir,U,Status) :- average_duration(O,D), random(X),
S is X*2*D, NT is T+S, round(NT,ROT), translate_operator(O,XO),
note_tampering(O,ROT), assertz(audit(U,ROT,Dir,XO,Status)).

/* Assert facts for files that have been changed or deleted */

23

note_tampering(newfile(Newname,Dir,_,_, , ,),T) :-
assertz(tampered_file(Newname,Dir, T)), !.

note_tampering(changeaccess(File,Dir,_, ,_,_,_,),T) :-
assertz(tampered_file(File,Dir,T)), !.

note_tampering(empty(Dir),T) :- file(File,Dir,_,_, ,_,),

assertz(tampered_file(File,Dir, T)), fail.
note_tampering(O,T) :- 1.

/* Take all the cached audit facts from all the goals and write */
/* them out to disk. Audit file format: */

/* audit(user, ending time of action, directory user is in, */

/* operation just completed, status of operation just completed) */

write_audit_file(File) :- tell(File),

- bagof(audit(T,U,DD,A,B),audit(U,T,DD,A,B),L), sort(L,L2),
fix_erroneous_complaints(L2,L.3), member(audit(X,Y,D,Z,W),L3),
writeq(audit(Y,X,D,Z,W)), write("."), nl, fail.

write_audit_file(File) :- told.

/* Eliminate spurious output due to rough handling of time: */
/* remove complaints about files not yet tampered with, and */
/* remove duplicate complaints about same file from same user */
fix_erroneous_complaints(L2,L3) :-
no_bt_append(L2a,[audit(T,User,D,'mail root',bad(File,Dir))IL.2b],L2),
(\+ tampered_file_before(File,Dir,T); complaint_before(User,File,Dir,T)), !,
fix_erroneous_complaints(L2b,L3b), append(L.2a,L3b,L3), !.
fix_erroneous_complaints(L2,L3) :-
no_bt_append(L2a,[audit(T,User,D,'mail root',bad(File,Dir))IL2b],L2), !,
fix_erroneous_complaints(L2b,L3b),
append(L2a,[audit(T,User,D,'mail root',bad(File,Dir))/L3b],L3), !.
fix_erroneous_complaints(L,L).
complaint_before(User,File,Dir,T) :-
audit(User,T2,D,'mail root',bad(File,Dir)), T2<T,
tampered_file_before(File,Dir,T2), !.
tampered_file_before(File,Dir,T) :- tampered_file(File,Dir,T2), \+ T2>T, !.
no_bt_append(L1,L2,L) :- append(L1,L2,L), !.

OPERATIONS SECTION: “userops” file
::- ensure_loaded(library(random)).

:- ensure_loaded('sim_init").

24

/* Description of the virtual file system: */
/* file(filename, directory, user, type, size, protection, timelastchanged) */

recommended([sustatus(User)], su(User)).
recommended([not(complaint(F,D))], mail(root,bad(F,D))).
recommended([viewed(Dir)], 1s(Dir)).
recommended([duplicated(File,Dir,File2,Dir2)],[file(File,Dir,A,B,C,D,E)],
cp(File,Dir,File2,Dir2,A,B,C,D,E)).
recommended([accessible(A,B)],[file(A,B,C,D,E,F,G),
not(file(A,B,_,_,_,;rwxrwx,_))],changeaccess(A,B,C,D,E,F,G rwxrwx)).
recommended([modified(File,Dir)],[file(File,Dir,A,B,C,D,E)],
emacs(File,Dir,A,B,C,D,E,DC)) :- random(R), DC is integer(300*R)-100.
recommended([clobbered(Dir)], empty(Dir)).
recommended([created(Newname,Newsize)],[file(File,Dir,User,B,C,D,E)],
newfile(Newname,Dir,User, readwrite’,Newsize,D,E)).
recommended({mailed(P,M)], mail(P,M)).
recommended([logged_in(User)], login(User)) :- user_name(User).
recommended([current_directory(Dir)], cd(Dir2)) :- random(R),
((R>0.6, Dir2=Dir); (\+ R>0.6, all_dirs(Dirs), member(Dir2,Dirs))).
recommended([not(logged_in(User))], logout).

precondition(cp(File,Dir,File2,Dir2,A,B,C,D,E),

[logged_in(User),current_directory(Dir),file(File,Dir,User,B,C,D,E)]).
precondition(emacs(File,Dir,User,B,C,D,E,F),

[file(File,Dir,User,B,Crwxrwx,E)]).
precondition(emacs(File,Dir,User,B,C,D,E,F),

[logged_in(User)]).
precondition(empty(Dir),[file(File,Dir,User,B,C,rwxrwx,E)]).
precondition(empty(Dir),[file(File,Dir,User,B,C,E,F)],

[logged_in(User)]).
precondition(newfile(Newname,Dir,User, readwrite',Newsize,E,F),

[file(A,Dir,User,C,D,E,F)],[logged_in(User),current_directory(Dir)]).
precondition(cd(Dir),[file(A,Dir,User,C,D,E,F)],

[not(current_directory(Dir)),logged_in(User)]).
precondition(ls(Dir),[file(A,Dir,User,C,D,E,F)],

[logged_in(User),current_directory(Dir)]).
precondition(su(User),[not(file(A,Dir,User,D,E,rwxrwx,G))],

[logged_in(User),not(sustatus(User))]).
precondition(changeaccess(A,B,C,D,E,F,G,NF),[file(A,B,C,D,E rwxrwx,G)]).
precondition(changeaccess(A,B,C,D,E,F,G,NF),

{logged_in(C),current_directory(B)]).
precondition(login(User),[not(logged_in(User))]).

25

precondition(logout,[logged_in(User)]).
precondition(mail(P,M), [logged_in(User)]).

deletepostcondition(cp(File,Dir,File2,Dir2,A,B,C,D,E),[]).
deletepostcondition(emacs(File,Dir,A,B,C,D,E F),[tampered(File,Dir)],[]).
deletepostcondition(emacs(File,Dir,A,B,C,D,E F),[file(File,Dir,A,B,C,D,E)]).
/* 6files */

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1),file(A2,B,C2,D2,E2,F2,G2),
file(A3,B,C3,D3,E3,F3,G3),file(A4,B,C4,D4,E4,F4,G4),
file(AS,B,C5,D5,E5,F5,G5),file(A6,B,C6,D6,E6,F6,G6)],
[file(A1,B,C1,D1,E1,F1,G1),file(A2,B,C2,D2,E2 F2,G2),
file(A3,B,C3,D3,E3,F3,G3),file(A4,B,C4,D4,E4,F4,G4),
file(A5,B,C5,D5,ES,F5,G5),file(A6,B,C6,D6,E6,F6,G6)]).

/* Sfiles ¥/

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1), file(A2,B,C2,D2,E2,F2,G2),
file(A3,B,C3,D3,E3,F3,G3), file(A4,B,C4,D4,E4,F4,G4),
file(AS,B,C5,D5,E5,F5,G5)),[file(A1,B,C1,D1,E1,F1,G1),
file(A2,B,C2,D2,E2,F2,G2), file(A3,B,C3,D3,E3,F3,G3),
file(A4,B,C4,D4,E4,F4,G4), file(A5,B,C5,D5,E5,F5,G5))).

[* 4files */

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1),file(A2,B,C2,D2,E2,F2,G2),
file(A3,B,C3,D3,E3,F3,G3),file(A4,B,C4,D4,E4,F4,G4)],
[file(A1,B,C1,D1,E1,F1,G1),file(A2,B,C2,D2,E2,F2,G2),
file(A3,B,C3,D3,E3,F3,G3),file(A4,B,C4,D4,E4,F4,G4)]).

/* 3files *

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1),
file(A2,B,C2,D2,E2 F2,G2),file(A3,B,C3,D3,E3,F3,G3)],
[file(A1,B,C1,D1,E1,F1,G1),
file(A2,B,C2,D2,E2,F2,G2),file(A3,B,C3,D3,E3,F3,G3)]).

/¥ 2files */

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1),file(A2,B,C2,D2,E2,F2,G2)],
[file(A1,B,C1,D1,E1,F1,Gl),file(A2,B,C2,D2,E2,F2,G2))).

/¥ 1file ¥/

deletepostcondition(empty(B),

[current_directory(B),file(A1,B,C1,D1,E1,F1,G1)],
[file(A1,B,C1,D1,E1,F1,G1)]).

deletepostcondition(cd(Dir),[current_directory(Dir2)]).

26

deletepostcondition(Is(Dir),[]).

deletepostcondition(su(User),[]).

deletepostcondition(changeaccess(A,B,C,D,E,F,G,P), []).

deletep0stcondition(newﬁlc(Newname,Dir,User,'readvvrite',Newsize,E,F),[]).

deletepostcondition(login(User),[logged_in(User2)]).

deletepostcondition(logout,[current_directory(Dir),logged_in(User),
sustatus(User)]).

deletepostcondition(mail(root,bad(F,D)), [complaint(F,D)]).

deletepostcondition(mail(P,M), []).

addpostcondition(Is(Dir), [viewed(Dir)]).
addpostcondition(cp(File,Dir,File2,Dir2,A,B,C,D,E),
[file(File2,Dir2,A,B,C,D,E),duplicated(File,Dir,File2,Dir2)]).
addpostcondition(emacs(File,Dir,A,B,C,D,E F),[tampered(File,Dir)],
[complaint(File,Dir),modified(File,Dir)]).
addpostcondition(emacs(File,Dir,A,B,C,D,E,DC),
~ [modified(File,Dir),file(File,Dir,A,B,NC,D,E)]) :-
var(C); (\ var(C), NC is C+DC).
addpostcondition(empty(Dir),[clobbered(Dir)}).
addpostcondition(newfile(Newname,Dir,User, readwrite',Newsize,E,F),
[created(Newname,Newsize)]).
addpostcondition(cd(Dir), [current_directory(Dir)]).
addpostcondition(su(User), [sustatus(User)]).
addpostcondition(changeaccess(A,B,C,D,E,F,G,NF),
[accessible(A,B),file(A,B,C,D,E,NF,G)]).
addpostcondition(login(User), [current_directory(User),logged_in(User)]).
addpostcondition(logout, []).
addpostcondition(mail(P,M), [mailed(P,M)]).

randchange(emacs(File,Dir,A,B,C,D,E F),[tampered(File,Dir)],
complaint(File,Dir),[1,0.2).

randchange(ls(Dir),[],viewed(Dir),[],0.3).

randchange(login(User),[insecure_passwd(User)],[current_directory(Dir),
logged_in(User)],[],0.6).

randchange(login(User),[],[not(insecure_passwd(User))],[1,0.8).

/* Translate from internal names of operators to Unix names for audit file */
translate_operator(cp(File,Dir,File2,Dir2,A,B,C,D,E), S) :-
name('cp ',AS1), name(File,AS2), name(Dir2,AS3), name(File2,AS4),
append(AS1,AS2,AS12), append(AS12,[32I1AS3],AS123),
append(AS123,[471AS4],AS), name(S,AS), !.
translate_operator(emacs(File,Dir,A,B,C,D,E,F), S) :-
name(‘emacs ',AS1), name(File,AS2), append(AS1,AS2,AS), name(S,AS), !.

27

translate_operator(newfile(Newname,Dir,User,'readwrite',Newsize,E,F), S) :-
name(‘emacs ',AS1),name(Newname,AS2),append(AS1,AS2,AS), name(S,AS).
translate_operator(empty(Dir), 'rm *").
translate_operator(cd(File), S) :-
name('cd ',AS1), name(File,AS2), append(AS1,AS2,AS), name(S,AS), !.
translate_operator(Is(Dir), 1s).
translate_operator(su(User), su).
translate_operator(changeaccess(A,B,C,D,E,F,G,P), S) :-
name('chmod ',AS1), name(777777,AS2), name(A,AS3),
append(AS1,AS2,AS12), append(AS12,[32|AS3],AS), name(S,AS), !.
translate_operator(login(User), login) :- var(User), !.
translate_operator(login(User), S) :-
name(login ,AS1), name(User,AS2), append(AS1,AS2,AS), name(S,AS), !.
translate_operator(logout, logout).
translate_operator(mail(P,M), S) :-
name(‘mail ',AS1), name(P,AS2), append(AS1,AS2,AS), name(S,AS), !.

/* Last (5th) audit argument is usually "ok", but sometimes not */

command_result(emacs(File,Dir,A,B,C,D,E,DC), NC) :- NC is C+DC, !.

command_result(newﬁle(Newname,Dir,User,'readwritc',Newsize,E,F), NC) :-
NC is Newsize, !.

command_result(mail(P,M), M).

command_result(O, ok).

/* Expected duration in seconds for each action */
average_duration(login(User),7).
average_duration(cd(A),10).
average_duration(Is(A),20).
average_duration(su(A),10).
average_duration(empty(A),50).
average_duration(cp(A,B,C,D,E,F,G,H,I),30).
average_duration(emacs(A,B,C,D,E,F,G,H),300).
average_duration(newfile(A,B,C,D,E,F,G),400).
average_duration(changeaccess(A,B,C,D,E,F,G,P),5).
average_duration(logout,4).
average_duration(mail(P,M),100).

/* Routine to calculate new directory you're in after a command */
new_directory(Dir,cd(Dir2),Dir2) :- !.
new_directory(Dir,login(User),User) :- !. .
new_directory(Dir,Op,Dir) :- !.

/* Routine to calculate new login name after a command */

28

new_account(User,login(User2),User2) :- !.
new_account(User,O,User).

/* Figure which files have been tampered in a state */
acknowledge_tamper(S,G) :-
(member(modified(F,D),G); member(duplicated(F,D,F2,D2),G)),
\+ tampered(F,D), assertz(tampered_file(F,D)), fail.
acknowledge_tamper(S,G) :- member(clobbered(D),G),
\+ tampcrcd(F,D),—a;s_c-n;z_(tampercd_file(F ,D)), fail.
acknowledge_tamper(S,G) :- member(modified(F,D),G),
\+ tampered(F,D):—a—s_s;r—tz'E’campered_ﬁle(F ,D)), fail.
acknowledge_tamper(S,G) :- member(accessible(F,D),G),
\+ tampered(F ,D):—a—ss_er_tz—(tampered_ﬁle(F,D)), fail.
acknowledge_tamper(S,G).

start_state(P1):-
bagof(file(A,B,C,D,E F,G),AABACADAEAFAGAile(A,B,C,D,E,F,G),P1).

random_user(User) :- setof(U,ANBACADAEAFAfile(A,B,U,C,D,E,F),UL),
randitem(UL,User).

user_name(User) :- setof(U,AABACADAEAFAfile(A,B,U,C,D,E,F),UL),
member(User,UL).

all_dirs(Dirs) :- setof(B,AACADAEAFAGAfile(A,B,C,D,E,F,G),Dirs).

INITIALIZATION SECTION: “sim_init” file

/* Description of a simulated file system: */
/* filename, directory, user, type, size, protection, timelastchanged */

:- dynamic newname/1.

file(bin,root,root,directory,100,'r--r--',10).
file(ls,bin,root,executable,2000,'r--r--',20).
file(cd,bin,root,executable,5000,' r--r--',30).
file(passwd,etc,root,readwrite, 1000, r--r--',40).
file(doe,users,doe,readwrite, 100, 'r--r--',100).
file(bigpaper,doe,doe,readwrite,30000, r--r--',500).
file(samples,smith,smith,readwrite, 100, 'r--r--',100).
file(shortpaper,smith,smith,readwrite,5400, 'r--r--',500).
file(goodpaper,jones,jones,readwrite,5400,'r--r--',500).
file(betterpaper,wesson,wesson,readwrite,5400,'r--1--',500).

29

file(bestpaper,dow,dow,readwrite,5400,'r--r--',500).

/* new names for newly created files */
newname(tmp127).
newname(tmp128).
newname(tmp129).
newname(tmp130).
newname(tmp131).
newname(tmp132).
newname(tmp133).

/* user names that have insecure passwords */
insecure_password(smith).
insecure_password(doe).

GOALS SECTION: “goals1” file

/* Simulated-user goals */
:- dynamic newname/1.

goal([not(logged_in(User)),not(complaint(F,D)),modified(ls,bin),
modified(cd,bin)]).
goal([not(logged_in(User)),modified(bigpaper,doe),viewed(doe)]).
goal([not(logged_in(User)),sustatus(dow),modified(samples,smith)]).
goal([not(logged_in(User)),accessible(bigpaper,doe),modified(bigpaper,doe)]).
goal([not(logged_in(User)),duplicated(passwd,etc,F,D),modified(passwd,etc)]).
goal([not(logged_in(User)),viewed(root)]).
goal([not(logged_in(User)),accessible(doe,users),modified(doe,users)]).
goal([not(logged_in(User)),viewed(smith),modified(shortpaper,smith)]).
goal([not(logged_in(User)),created(Newname,Newsize)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)-100.
goal([not(logged_in(User)),created(Newname,Newsize),
duplicated(bin,root,F,D)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)-100.
goal([not(logged_in(User)),duplicated(samples,root,F,D)]).
goal([not(logged_in(User)),created(Newname,Newsize),
modified(shortpaper,smith)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),created(Newname,Newsize),
duplicated(bigpaper,doe,F,D),modified(bigpaper,doe)]) :-

30

bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),sustatus(dow), modified(betterpaper,wesson)]).
goal([not(logged_in(User)),not(complaint(F,D)),viewed(root)]).
goal([not(logged_in(User)),modified(goodpaper,jones),viewed(jones)]).
goal([not(logged_in(User)),not(complaint(F,D)),modified(betterpaper,wesson)]).
goal([not(logged_in(User)),accessible(bestpaper,dow),modified(bestpaper,dow)]).
goal([not(logged_in(User)),sustatus(smith),accessible(goodpaper,jones)]).
goal([not(logged_in(User)),modified(ls,bin),modified(cd,bin)]).
goal([not(logged_in(User)),modified(bigpaper,doe),viewed(doe)]).
goal([not(logged_in(User)),not(complaint(F,D)),modified(passwd,etc)]).
goal([not(logged_in(User)),not(complaint(F,D)),accessible(bigpaper,doe),
modified(bigpaper,doe)]).
goal([not(logged_in(User)),not(complaint(F,D)),duplicated(passwd,etc,F,D),
modified(passwd,etc),accessible(passwd,etc)]).
goal([not(logged_in(User)),not(complaint(F,D)),accessible(doe,users),
- modified(doe,users)]).
goal([not(logged_in(User)),viewed(smith),modified(shortpaper,smith)]).
goal([not(logged_in(User)),created(Newname,Newsize)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),created(Newname,Newsize)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),duplicated(samples,root,F,D)]).
goal([not(logged_in(User)),created(Newname,Newsize),
modified(shortpaper,smith)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),viewed(smith),modified(shortpaper,smith)]).
goal([not(logged_in(User)),created(Newname,Newsize)],
[duplicated(bigpaper,doe,F,D),modified(bigpaper,doe)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.
goal([not(logged_in(User)),sustatus(dow),clobbered(doe)]).
goal([not(logged_in(User)),viewed(wesson)]).
goal([not(logged_in(User)),not(complaint(F,D)),viewed(root)]).
goal([not(logged_in(User)),
modified(goodpaper,jones),viewed(jones)]).
goal([not(logged_in(User)),not(complaint(F,D)),modified(betterpaper,wesson)]).
goal([not(logged_in(User)),not(complaint(F,D)),accessible(bestpaper,dow),
modified(bestpaper,dow)]).

31

/* new names for new files */

newname(tmp127).
newname(tmp128).
newname(tmp129).
newname(tmp130).
newname(tmp131).
newname(tmp132).
newname(tmp133).

GOALS SECTION: “goals2” file

/* Simulated-user goals */
:- dynamic newname/1.

goal([not(logged_in(User)),not(complaint(F,D)),modified(bigpaper,doe),

~ viewed(doe)]).

goal([not(logged_in(User)),created(Newname,Newsize)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400%R)+100. -

goal([not(logged_in(User)),modified(bin,root)]).

goal([not(logged_in(User)),modified(samples,smith)]).

goal([not(logged_in(User)),viewed(etc),duplicated(passwd,etc,F,D)]).

goal([not(logged_in(User)),modified(goodpaper,jones)]).

goal([not(logged_in(User)),not(complaint(F,D)),viewed(dow)]).

goal([not(logged_in(User)),sustatus(dow),modified(samples,smith)]).

goal([not(logged_in(User)),duplicated(bestpaper,dow,F,D)]).

goal([not(logged_in(User)),modified(bigpaper,doe),accessible(bigpaper,doe))).

goal([not(logged_in(User)),not(complaint(F,D)),viewed(bin)}).

goal([not(logged_in(User)),created(Newname,Newsize)]) :-
bagof(A,newname(A),NNL),randitem(NNL,Newname),
retract(newname(Newname)),random(R), Newsize is integer(1400*R)+100.

goal([not(logged_in(User)),accessible(betterpaper,wesson)]).

goal([not(logged_in(User)),viewed(jones),mailed(goodpaper,jones)]).

goal([not(logged_in(User)),sustatus(jones),clobbered(wesson)]).

/* new names for new files */

newname(tmp127).

newname(tmp128).

newname(tmp129).

newname(tmp130).

newname(tmp131).

newname(tmp132).

newname(tmp133).

32

APPENDIX B: PROGRAM RESULTS

This appendix contains the results of the simulation’s execution. These results are
found in the “auditX” file.

Audit file format:
audit(user, ending time of action, directory user is in,
operation just completed, status of operation just completed or size of new file)

RESULTS: “auditl” file (the result of running “goals1”

audit(jones,190,none,’login jones’,0k).
audit(jones,242,jones,’emacs goodpaper’,5550).
audit(jones,268,jones,ls,0k).
audit(jones,270,jones,logout,o0k).
audit(smith,298,none,’login smith’,0k).
audit(smith,320,smith,’emacs shortpaper’,5525).
audit(smith,329,smith,’login dow’,0k).
audit(dow,661,dow,’emacs tmp127°,1142).
audit(dow,662,dow,logout,0k).
audit(wesson,884,none,’login wesson’,0k).
audit(wesson,1386,wesson,’emacs betterpaper’,5508).
audit(wesson,1392,wesson,logout,ok).
audit(doe,1604,none,’login doe’,0k).
audit(root,1684,none,’login root’,0k).
audit(root,1695,none,’login root’,0k).
audit(root,1707,root,ls,0k).
audit(root,1714,root,logout,ok).
audit(doe,2160,none,’login doe’,0k).
audit(doe,2163,doe,’emacs bigpaper’,30037).
audit(doe,2165,doe,’chmod 777777 bigpaper’,0k).
audit(root,2167,none,’login root’,0k).
audit(doe,2168,doe,ls,0k).
audit(doe,2173,doe,logout,ok).
audit(root,2193,root,’emacs 1s’,1937).
audit(doe,2218,doe,’ emacs bigpaper’,29979).
audit(doe,2221,doe,logout,ok).
audit(root,2342,root,’emacs cd’,5006).
audit(root,2346,root,logout,ok).
audit(root,2427,root,’emacs Is’,2090).
audit(root,2956,root,’emacs cd’,5148).
audit(root,2958,root,logout,ok).
audit(dow,3612,none,’login dow’,0k).

33

audit(dow,3620,dow,’chmod 777777 bestpaper’,0k).
audit(root,3830,none,’login root’,0k).
audit(root,3832,root,’cd etc’,0k).
audit(root,3883,etc,’cp passwd etc/passwd’,0k).
audit(root,3891,etc,’chmod 777777 passwd’,0k).
audit(dow,3917,none,’login dow’,0k).
audit(dow,3934,dow,su,0k).
audit(dow,3947,dow,’login smith’,0k).
audit(dow,4147,dow, emacs bestpaper’,5324).
audit(dow,4152,dow,logout,ok).
audit(dow,4153,none,’login dow’,0k).
audit(dow,4157,dow,su,ok).
audit(dow,4160,dow,’login wesson’,0k).
audit(smith,4206,smith,’emacs samples’,275).
audit(smith,4212,smith,logout,ok).
audit(wesson,4368,none,’login wesson’,0k).
audit(root,4392,etc,’emacs passwd’,1087).
audit(root,4430,etc, mail root’ ,bad(passwd,etc)).
audit(root,4432,etc,logout,ok).
audit(wesson,4564,wesson,’ emacs betterpaper’,5416).
audit(wesson,4619,wesson,’ emacs betterpaper’,5497).
audit(wesson,4624,wesson,logout,ok).
audit(wesson,4648,wesson, mail root’ ,bad(betterpaper,wesson)).
audit(doe,4650,none,’login doe’,0k).
audit(doe,4655,doe,’login root’,0k).
audit(wesson,4655,wesson,logout,ok).
audit(root,4662,root,’cd bin’,0k).
audit(root,4664,bin,’login doe’,0k).
audit(doe,4673,doe,’login root’,0k).
audit(root,4674,root,’cd etc’,0k).
audit(root,4686,etc,’login doe’,0k).
audit(doe,4692,doe,’cd users’,0k).
audit(doe,4701,users,’chmod 777777 doe’,0k).
audit(doe,4946,users,’emacs doe’,102).
audit(doe,4948,users,logout,ok).
audit(root,4997,none,’login root’,0k).
audit(root,5668,root,’emacs tmp131°,1224).
audit(root,5671,root,logout,ok).
audit(doe,6318,none,’login doe’,0k).
audit(doe,6342,doe,’cp bigpaper doe/bigpaper’,ok).
audit(dow,6374,none,’login dow’,0k).
audit(dow,6375,dow,’ chmod 777777 bestpaper’,0k).
audit(doe,6741,doe,’emacs bigpaper’,30024).

34

audit(doe,6742,doe,’login dow’,0k).
audit(dow,6765,dow,’emacs tmp132°,135).
audit(dow,6770,dow logout,ok).
audit(dow,6771,dow,’emacs bestpaper’,5318).
audit(dow,6773,dow,logout,ok).
audit(smith,7437,none,’login smith’,0k).
audit(root,7451,none,’login root’,0k).
audit(doe,7477,none,’login doe’,0k).
audit(doe,7484,doe,’login root’,0k).
audit(root,7491,root,ls,fail).
audit(root,7501,root,’cd bin’,0k).
audit(root,7503,bin,’login doe’,0k).
audit(root,7504,root,ls,0k).
audit(root,7505,root,logout,ok).
audit(doe,7515,doe,’login root’,0k).
‘audit(root,7516,root,’cd etc’,0k).
audit(root,7522,etc,’login doe’,0k).
audit(doe,7535,doe,’cd users’,0k).
audit(doe,7540,users,”chmod 777777 doe’,0k).
audit(doe,7567,users,’emacs doe’,136).
audit(doe,7569,users,logout,ok).
audit(smith,7603,none,’login smith’,0k).
audit(smith,7607,smith,su,0k).
audit(smith,7609,smith,’login jones’,ok).
audit(jones,7612,jones,’chmod 777777 goodpaper’,0k).
audit(jones,7617 jones,logout,ok).
audit(root,7786,none,’login root’,0k).
audit(root,7828,root,’cp bin root/bin’,0k).
audit(root,7836,root,’login dow’,0k).
audit(smith,7921,smith,’emacs shortpaper’,5498).
audit(jones,7931,none,’login jones’,ok).
audit(smith,7934,smith,’login dow’,0k).
audit(root,8108,none,’login root’,0k).
audit(smith,8172,none,’login smith’,0k).
audit(jones,8223,jones,’emacs goodpaper’,5445).
audit(jones,8252,jones,ls,0k).
audit(jones,8256,jones,logout,ok).
audit(dow,8316,dow,’ emacs tmp128°,985).
audit(dow,8321,dow,logout,ok).
audit(root,8346,root,’emacs tmp133°,255).
audit(root,8349,root,logout,ok).
audit(smith,8540,smith,’emacs shortpaper’,5368).
audit(smith,8570,smith,ls,0k).

35

audit(smith,8571,smith,logout,ok).
audit(dow,8598,dow,” emacs tmp129°,599).
audit(dow,8604,dow,logout,ok).
audit(root,8654,none,’login root’,0k).
audit(root,8754,root,’emacs passwd’,1147).
audit(root,8759,root,logout,ok).
audit(doe,8861,none,’login doe’,0k).
audit(doe,8982,doe,’emacs bigpaper’,29909).
audit(doe,8990,doe,Is,0k).
audit(doe,8991,doe,logout,ok).
audit(smith,8994,none,’login smith’,0k).
audit(smith,9068,smith,’emacs shortpaper’,5418).
audit(smith,9093,smith,ls,ok).
audit(smith,9097,smith,logout,ok).
audit(doe,9193,none,’login doe’,0k).
audit(doe,9196,doe,’chmod 777777 bigpaper’,ok).
audit(root,9260,none,’login root’,0k).
audit(root,9272,root,’cd bin’,0k).
audit(root,9280,bin,’cd etc’,0k).
audit(root,9320,etc,’cp passwd etc/passwd’,0k).
audit(doe,9416,doe,’emacs bigpaper’,30186).
audit(doe,9424,doe,logout,ok).
audit(dow,9462,none,’login dow’,0k).
audit(dow,9467,dow,su,0k).
audit(dow,9481,dow,’login doe’,0k).
audit(doe,9498,doe,’ rm *’,0k).
audit(doe,9504,doe,logout,ok).
audit(wesson,9645,none,’login wesson’,0k).
audit(wesson,9656,wesson,ls,fail).
audit(wesson,9694,wesson,Is,fail).
audit(root,9707,none,’login root’,0k).
audit(wesson,9715,wesson,ls,0k).
audit(wesson,9722,wesson,logout,ok).
audit(root,9811,etc,’emacs passwd’,977).
audit(root,9813,etc,logout,0k).
audit(root,9851,none,’login root’,0k).
audit(smith,9854,none,’login smith’,0k).
audit(root,9874,root,ls,0k).
audit(root,9876,root,logout,ok).
audit(root,10149,root,’emacs tmp130’,1023).
audit(root,10153,root,logout,ok).
audit(smith,10449,smith,’emacs shortpaper’,5535).
audit(smith,10475,smith,Is,fail).

36

audit(smith,10514,smith,ls,0k).
audit(smith,10519,smith,logout,ok).

RESULTS: “auditZ” file (the results of running “goals2”

audit(smith,58,none, login smith’,0k).
audit(smith,253,smith,’emacs samples’,269).
audit(smith,257,smith,logout,ok).
audit(doe,922,none,’login doe’,0k).
audit(doe,931,doe,’chmod 777777 bigpaper’,0k).
audit(doe,1352,doe,’emacs bigpaper’,29943).
audit(doe,1358,doe,logout,ok).
audit(root,1598,none,’login root’,0k).
audit(root,1727,root,’emacs tmp133°,515).
audit(root,1733,root,logout,ok).
~audit(doe,2166,none,’login doe’,0k).
audit(doe,2562,doe,’emacs bigpaper’,30090).
audit(doe,2572,doe,ls,0k).
audit(doe,2576,doe,logout,ok).
audit(dow,3263,none,’login dow’,0k).
audit(dow,3310,dow,’cp bestpaper dow/bestpaper’,0k).
audit(dow,3317,dow,logout,ok).
audit(jones,3349,none,’login jones’,0k).
audit(jones,3363,jones,su,ok).
audit(jones,3364,jones,’login wesson’,0k).
audit(wesson,3440,wesson,’rm *’,0k).
audit(wesson,3441,wesson,logout,ok).
audit(root,3611,none,’login root’,0k).
audit(root,3823,none,’login root’,0k).
audit(root,3841,root,’cd bin’,0k).
audit(root,3858,bin,’cd etc’,0k).
audit(root,3864,root,’emacs bin’,5).
audit(root,3868,root,logout,ok).
audit(root,3874,etc,’cp passwd etc/passwd’,0k).
audit(root,3896,etc,Is,0k).
audit(root,3898,etc,logout,ok).
audit(wesson,7786,none,’login wesson’,0k).
audit(wesson,7791,wesson,’chmod 777777 betterpaper’,0k).
audit(wesson,7793,wesson,logout,ok).
audit(jones,8295,none,’login jones’,ok).
audit(dow,8347,none,’login dow’,0k).
audit(dow,8386,dow,ls,0k).
audit(dow,8394,dow logout,ok).

37

audit(root,8394,none,’login root’,0k).
audit(root,8400,root,”cd bin’,0k).
audit(root,8436,bin,ls,fail).
audit(root,8453,bin,ls,0k).
audit(root,8455,bin,logout,ok).
audit(root,8594,none,’login root’,0k).
audit(jones,8696,jones,” emacs goodpaper’,5511).
audit(jones,8702,jones,logout,ok).
audit(root,8759,root,’emacs tmp132°,1199).
audit(root,8764,root,logout,ok).
audit(dow,8839,none,’login dow’,0k).
audit(dow,8841,dow,su,0k).
audit(dow,8846,dow,’login smith’,0k).
audit(jones,9246,none, login jones’,0k).
audit(jones,9252,jones, s fail).

audit(jones,9267 ,jones,ls,0k).
audit(jones,9370,jones,’mail goodpaper’,jones).
audit(jones,9375,jones,logout,ok).
audit(smith,9391,smith,’emacs samples’,182).
audit(smith,9395,smith,logout,0k).

38

10

11

12

LIST OF REFERENCES

Rowe, Neil C., and Galvin, Thomas P., "An Authoring System for Intelligent Tutors
for Procedural Skills," Department of Computer Science, Naval Postgraduate
School, Monterey, CA.

Puketza, Nicholas, Zhang, Biswanath, Mukherjee Kui, and Olsson, Ronald A.,
"Testing Intrusion Detection Systems: Design Methodologies and Results from an
Early Prototype," Department of Computer Science, University of California, Davis,
CA.

Feigenbaum, E.A., and Feldman, J., "Computers and Thought," McGraw-Hill, New
York, 1963.

Nilsson, Nils J., "Readings in Planning, " Morgan Kaufmann Publishers, Inc.,
1990.

Kulikowski, C.A., Huber, R.M., and Ferrate, G.A., "Artificial Intelligence, Expert
Systems and Languages in Modeling and Simulation," North-Holland, New York,
1988.

Rowe, Neil C., "Atrtificial Intelligence Through Prolog," Prentice-Hall, Englewood
Cliffs, NJ, 1988.

Newell, Allen, and Simon, H.A., "GPS: A Program that Simulates Human Thought,"
Lerende Automaten, R. Oldenbourg, KG, 1961.

Forsyth, Richard, "Expert Systems," Chapman and Hall Computing, New York,
1984.

Ernst, George W., and Newell, Allen, "GPS: A Case Study in Generality and
Problem Solving," Academic Press, New York, 1969

Tate, Austin, Hendler, James, and Drummond, Mark, "A Review of Al Planning
Techniques," Al Research Branch, NASA Ames Research Center, Mountain View,
CA.

Georgeff, Michael P., "Planning," Annual Review of Computer Science, Volume 2,
Annual Reviews, Inc., 1987.

Rich, Lyford D., "Unix Security: A Penetration Analysis of Navy Computer
Systems," Master’s Thesis, Naval Postgraduate School, Monterey, CA,1992.

39

13

14

15

16

17

Lunt, Teresa F., Jagannathan, R., Lee, Rosana, Whitehurst, Alan, and Listgarten,
Sherry, "Knowledge-Based Intrusion Detection," Proceedings of the 1989 Al
Systems in Government Conference, March, 1989.

Denning, D. E., and Neumann, P. G., "Requirements and Model for IDES- A Real-
Time Intrusion Detection System," Computer Science Laboratory, SRI International,
1985.

Lunt, Teresa F., "Real-Time Intrusion Detection," Proceedings of COMPCON
Spring’89, San Francisco, CA, February, 1989.

Lunt, Teresa F., "Automated Audit Trail Analysis," Proceedings of the 11th National
Computer Security Conference," Baltimore, MD, October, 1988.

Quintus Prolog, Release 3, Quintus Corporation, Palo Alto, CA.

40

INITIAL DISTRIBUTION LIST

Defense Technical Information Center e 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library..................... 2
Code 52

Naval Postgraduate School

Monterey, CA 93943-5101

Naval Postgraduate School
Monterey, CA 93943

Naval Postgraduate School
Monterey, CA 93943

Naval Postgraduate School
Monterey, CA 93943

LCDR Christopher C. RODEItS oo 2

1023 Cassia Way
Sunnyvale, CA 94086

41

